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Asymmetric error field interaction with rotating conducting walls
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The interaction of error fields with a system of differentially rotating conducting walls is studied

analytically and compared to experimental data. Wall rotation causes eddy currents to persist

indefinitely, attenuating and rotating the original error field. Superposition of error fields from

external coils and plasma currents are found to break the symmetry in wall rotation direction. The

vacuum and plasma eigenmodes are modified by wall rotation, with the error field penetration time

decreased and the kink instability stabilized, respectively. Wall rotation is also predicted to reduce

error field amplification by the marginally stable plasma. VC 2012 American Institute of Physics.

[http://dx.doi.org/10.1063/1.4737092]

I. INTRODUCTION

Plasma confinement devices inevitably contain non-

axisymmetric magnetic fields due to mechanical misalign-

ments of current-carrying elements. As these are not part of

the design magnetic configuration, they are termed “error

fields” (EFs). Such EFs play a critical role in these devi-

ces.1,2 Besides directly reducing confinement through

enhanced particle drifts, EFs affect the plasma through their

impact on the torque balance.3 The EF can slow the plasma

rotation by applying resonant or non-resonant braking tor-

ques,4,5 and in certain regimes the EF can actually accelerate

the plasma.6

As plasma flow is important to the stability of various

magneto-hydrodynamic (MHD) modes, EFs are indirectly

involved in determining the stability of the plasma. For

example, minimizing the EF reduces braking torques which

then allows the plasma flow to be sustained for longer peri-

ods which in turn increases the discharge duration.7–9 To

complicate matters, the EF can also be amplified by the

plasma itself, and this modification to the EF (called the

“plasma response”) has been found to depend on the under-

lying stability of the plasma.10,11 This necessitates a sophisti-

cated plasma model to accurately predict the total EF and

thus the performance of future devices.12,13 EFs are also im-

portant to the accelerator community for related reasons.14,15

Several studies have theoretically predicted that differ-

ential rotation of a conducting boundary can stabilize MHD

modes.16–19 As such, they have been considered for future

devices.20 Topologically, rotation in toroidal geometries is

only possible with flowing liquid metal. As any such future

devices would unavoidably contain EFs, the interaction of

the EF with rotating (or flowing) elements is of fundamental

interest. Previous theoretical work including rotating ele-

ments has considered error field amplification (EFA) by the

plasma,21–23 and the modification to the EFs in specific

geometries.24–27

In this study, the interaction of the EF with a rotating

conducting wall is studied analytically and compared to

experiments on the Rotating Wall Machine, a screw-pinch

device equipped with a high-speed solid rotating wall and

extensive magnetic diagnostics.28 As with toroidal configura-

tions, MHD modes in this device have been found to be very

sensitive to EFs, with the EF causing mode-locking and kink

mode destabilization.29,30 Thus, understanding the interac-

tion of the EF with wall rotation is required to understand

MHD stability in this experiment. This study shows that wall

rotation permanently shields the EFs from the plasma and

induces a phase shift from the applied EF orientation. Super-

position of EFs from distinct sources is found to lead to

asymmetry in wall rotation direction, with the potential for

one direction of rotation to overcome the shielding effect

and increase the EF felt by the plasma. The normal modes of

the rotating system are derived and it is shown that the verti-

cal field penetration time decreases as wall rotation

increases. Wall rotation is also predicted to reduce the ability

of the plasma to amplify the EF.

The organization of this paper is as follows: Section II

defines the geometry and derives the thin-wall matching con-

ditions. Section III examines the t 7!1 solution, as rotation

induces persistent eddy currents that alter the magnetic field

structure. Section IV derives the vacuum eigenmodes of the

rotating wall system and studies the influence of rotation on

these modes. Section V extends the formalism of this paper

to study the linear stability of the plasma and treat EF ampli-

fication. Further discussion is provided in Sec. VI.

II. ANALYTICAL AND EXPERIMENTAL GEOMETRY

In this study, several wall geometries are considered.

These are: a single rotating wall (Fig. 1(a)), two walls with the

outer wall rotating (Fig. 1(b)), and three walls with the middle

wall rotating (Fig. 1(c)). The single wall geometry is useful as

it forms the building block of the multi-wall systems. The

two-wall geometry contains the relevant rotating wall physics,

while the three-wall geometry is required to match the experi-

ment (whose parameters are displayed in Table I). In the de-

vice, the third wall represents the mechanical structure used to

support the rotating wall. Measurements herein are made

using an 8 axial by 10 azimuthal Br fluxloop array.28

Experimentally, two classes of symmetry-breaking cur-

rent sources are available. The first is applied from outside

the rotating wall through conductors far from the walls, as

shown in Fig. 2(a). Current through this coil provides a
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predominantly m¼ 1 field (where m is the azimuthal wave-

number) and is hereafter called ~Bext. Small imbalances in the

resistance of conductors used to return plasma currents in the

linear device can also source ~Bext. The second current source

is that of equilibrium plasma currents whose centroid is off-

set from the wall geometric axis (hereafter called ~Beq). This

offset would arise from the misalignment of the magnetic

axis to the geometric axis. ~Beq is produced either with a

current-carrying plasma or with a solid conducting rod

located at radius rr and angle g, as shown in Fig. 2(b). The

field produced by this configuration is not spectrally pure,

though only m¼ 1 is treated as this is the only component

resonant with the kink mode in the device.

A. Vacuum region solution and boundary conditions

In the vacuum regions outside and between the rotating

walls, the Laplace equation (r2U ¼ 0, where U is the mag-

netostatic potential) in cylindrical geometry is used to calcu-

late the magnetostatic fields. The displacement current is

neglected, and the long-cylinder approximation removes all

variation in ẑ. As ~B ¼ �rU,

Brðr; hÞ ¼ <½ðAj � Akr�2Þe�ih�

Bhðr; hÞ ¼ <
�
� iðAj þ Akr�2Þ

�
e�ih

h i
; (1)

where the guide field (Bz) is neglected. Aj, Ak are constant

(complex) coefficients, and time-dependence has been left

unspecified. If a current source of the form of Fig. 2(a) is

present, the solution as r 7!1 is ~Bext. Thus, in this case sim-

ply Aj¼Bext, where the coordinate system is aligned with
~Bext. If ~Beq (of the form of Fig. 2(b)) is present, then the field

inside the innermost conductor has a term like B / r�2.

The matching used is to let Ak¼ beq, where beq ¼ Beqr2 ¼
�i

l0Iprr

2p expð�igÞ and has units of [T m2] and is thus left low-

ercase. Ip is the current driven (into the page) through the

plasma or conducting rod at radius rr and angle g.

B. Matching through rotating conducting walls

In the rotating/static walls, the magnetic field obeys the

induction equation

@~B

@t
¼ r� ~V � ~B|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

advection

þ 1

l0r
r2~B

|fflfflfflfflffl{zfflfflfflfflffl}
diffusion

; (2)

where r is the (constant) conductivity of the wall. The radial

projection of this vector equation is used. Enforcing ~B /
expð�ctÞ allows the first term in Eq. (2) to be linear in c. For

this work, c is complex and � cr þ ix. Note that cr > 0 is a

decay constant, while cr < 0 is a growth rate. The wall ve-

locity is that of rigid rotation, ~V ¼ rXĥ. For the final term

the long-cylinder identity ½r2~B�r̂ ¼ 1
rr2ðrBrÞ is used, after

which Eq. (2) becomes

ðcþ iXÞBr ¼ �
1

l0r
1

r
r2ðrBrÞ:

This equation is now integrated from r�w � rw � dw

2
to

rþw � rw þ dw

2
, where rw and dw are the radius and thickness,

respectively, of any wall. The thin-wall approximation is

used which states that Br and rw are constant across dw. For

this to be accurate the wall thickness dw must be much less

than the skin depth for a given c such that cl0rd2
w � 1. This

is easily satisfied for the experiment as csw � rw=dw � 100.

Here, sw � l0rrwdw is called the “wall time.” The integra-

tion yields

FIG. 1. Wall geometries and solution regions examined in this study with

scale set to experimental parameters. (a) Single rotating wall geometry,

(b) two-wall geometry, and (c) three-wall geometry.

TABLE I. Experimental parameters for each cylindrical wall of the rotating

wall machine. For all walls, the aspect ratio (radius/length) � 10.

Wall Radius (cm) Wall time (ms)

Vacuum vessel ra¼ 7.71 sa¼ 3.5

Rotating wall rb¼ 9.16 sb¼ 7.0

Mechanical structure rc¼ 17.30 sc¼ 41.3

Measurement array rm¼ 8.00 N/A

FIG. 2. Cartoons of (a) an externally applied error field (~Bext) driven by a

coil external to the conducting walls and (b) current applied through a con-

ducting rod or stable plasma within the interior of the conducting walls

(located at radius rr and angle g) producing ~Beq.
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dwðcþ iXÞBr ¼ �
1

l0r
1

rw

@

@r
ðrBrÞjr¼rþw

r¼r�w

and r � ~B ¼ 0 yields @
@r ðrBrÞ ¼ � @Bh

@h ¼ iBh. The final

matching conditions are presented

Brjr¼rþw
r¼r�w
¼ 0 (3)

Bhjr¼rþw
r¼r�w
¼ iðcþ iXÞswBr: (4)

These conditions must be upheld at each wall, with X ¼ 0 if

the wall is static. Note that if both c ¼ 0 and X ¼ 0 the field

is not affected by the wall.

III. STEADY-STATE ERROR FIELD INTERACTIONS

Steady state field solutions (c ¼ 0) are strongly affected

by wall rotation (X). The fields arising from currents external

to the conducting walls (~Bext, as in Fig. 2(a)) and equilibrium

plasma currents internal to the conducting walls (~Beq, as in

Fig. 2(b)) will be first treated independently then linearly

superimposed. Solutions will be calculated and compared to

experimental measurements using solid conductors or a sta-

ble plasma. When c ¼ 0, static conducting walls do not play

a role. Thus, the single wall geometry of Fig. 1(a) is used.

A. External error fields

Forcing from currents external to the rotating wall (as in

Fig. 2(a)) requries that as r 7!1, ~B 7! ~Bext. The following

functional form of ~B must be upheld

I : Brðr; hÞ ¼ <½A0e�ih�
II : Brðr; hÞ ¼ <½ðBext � A1r�2Þe�ih�

(5)

and where the divergence-free condition can be used to find

Bh. Using the matching conditions of Eqs. (3) and (4), the

following matrix equation is generated

1 r�2
b

iRm � 1 r�2
b

� �
A0

A1

� �
¼ Bext

�Bext

� �
; (6)

where Rm � Xsb. Equation (6) is non-homogeneous, and

upon inversion yields a unique solution for An. The ratio of

the field amplitude within the rotating wall (Br) to the

applied Bext field is given by

j~Brj
Bext

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ R2

m

4

r : (7)

Wall rotation permanently shields the region within the rotat-

ing wall from error fields, an effect termed “flux exclusion”

and clearly illustrated by the density of the fieldlines within

the wall in Figs. 3(a)–3(c). Figure 3(d) compares this calcu-

lation to experimental data and the agreement is excellent.

Wall rotation also introduces a phase shift (/) between the

applied ~Bext and ~Br. This is calculated using Eq. (6) to be

/ ¼ arctan
Rm

2

� 	
: (8)

In the thin-wall limit, / cannot exceed 6p=2. Figure 3(e)

compares this calculation to experimental data and agree-

ment is found to be excellent. The superb agreement of

Fig. 3 gives confidence that the experiment can be used to

test the more complex configurations presented in the re-

mainder of this study.

B. Equilibrium plasma currents

Forcing from plasma currents internal to the rotating

wall (as in Fig. 2(b)) requires that the portion of the field

decaying as r�2 be uniquely specified by the current source.

Utilizing the single wall geometry, the following functional

form of ~B must be upheld

FIG. 3. (a)-(c) Fieldlines of the steady-state

field created by the application of an exter-

nal m¼ 1 field (~Bext) with all static walls

omitted for clarity. The field within the rotat-

ing wall is observed to be (d) excluded and

(e) phase shifted by the persistent eddy cur-

rents in the rotating wall.
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I : Brðr; hÞ ¼ <½ðA0 � beqr�2Þe�ih�;
II : Brðr; hÞ ¼ <½ð�A1Þr�2e�ih�:

This is similar to Eq. (5) though with the source term beq

located in the interior solution as discussed in Sec. II A.

Using the matching conditions of Eqs. (3) and (4), the fol-

lowing matrix equation is generated

r2
b 1

r2
b iRm � 1

� �
A0

A1

� �
¼ beq

�beq

� �
: (9)

Equation (9) is non-homogeneous, and upon inversion yields

a unique solution for An. Solution fieldlines at various Rm are

shown in Figs. 4(a)–4(c). Flux exclusion again occurs,

though its form is modified from Eq. (7) and a dependence

on rm (the measurement radius) is introduced

jBrj
beqr�2

m

¼ 1

1þ R2
m

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ am

R2
m

4

� 	2

þ R2
m

4
ð1� amÞ2

s
; (10)

where am � r2
b�r2

m

r2
b

has been defined and is 0.23 in the experi-

ment. Though similar in form to Eq. (7), correction terms of

OðamÞ exist. In the limit of rm 7! rb and am 7! 0, Eq. (10) is

identical to Eq. (7). Comparison to experimental data, shown

in Fig. 4(d), is found to be good. The departure from the per-

fect agreement of Sec. III A will be discussed in Sec. III C.

The observed phase shift is distinct from Eq. (8) and now

also depends on rm

/ ¼ arctan
Rm

2

1� am

1þ am

R2
m

4

0
BB@

1
CCA

0
BB@

1
CCA: (11)

Again corrections of OðamÞ exist, and these tend to reduce

the amount of phase shift observed. Similarly, in the limit of

rm 7! rb, Eq. (11) is identical to Eq. (8). Excellent agreement

of Eq. (11) with experimental data is shown in Fig. 4(e).

Unlike the case of external forcing, the effect of the rotating

wall on Eqs. (10) and (11) depends on rm and is most pro-

nounced at rm ¼ rb. Also, note that this field contains a finite

electromagnetic torque if Rm 6¼ 0.30

C. Superposition of error fields and asymmetric
response

The difference between the response to ~Bext and ~Beq in

flux exclusion (Eq. (7) vs Eq. (10)) and phase shift (Eq. (8) vs

Eq. (11)) gives rise to an asymmetry in wall rotation direction.

To illustrate this simply, the linear superposition of ~Bext and
~Beq is checked for parity. ~Bext ¼ Bext exp ðið/eðRmÞ � /0eÞÞ
and ~Beq ¼ Beq exp ðið/iðRmÞ � /0iÞÞ, where /eðRmÞ is Eq. (8)

and /iðRmÞ is Eq. (11). All amplitude informations (Eqs. (7)

and (10)) is ignored for simplicity and both source terms are

separated at Rm ¼ 0 by an angle D/0 � /0e � /0i. Parity at

þRm and�Rm is checked

¼ j~Bext þ ~Beqj2þRm
� j~Bext þ ~Beqj2�Rm

¼ 2BextBeq

�
cos ðD/ � D/0Þ � cosð�D/ � D/0Þ

�
¼ 4BextBeqsin ðD/ÞsinðD/0Þ;

(12)

where D/ � /eðRmÞ � /iðRmÞ is the difference between

Eqs. (8) and (11). Since D/ 6¼ 0, Eq. (12) is non-zero. Asym-

metry in Rm is maximized when D/0 ¼ 6 p
2
.

This asymmetry is demonstrated experimentally by

pulsing ~Bext and ~Beq simultaneously. Inclusion of both ~Bext

and ~Beq using the full vector superpositions of Eqs. (7), (8)

and (10), (11) is shown in Figs. 5(a) and 5(b) for two differ-

ent D/0, each separated by p. Changing D/0 by p is done by

repositioning the conducting rod (changing the angle g in

Fig. 2(b)). The resultant asymmetry in flux exclusion is cap-

tured by the model, as is the asymmetry reversal as

D/0 7!D/0 þ p. Note that Fig. 5(b) shows the same data of

FIG. 4. (a)-(c) Fieldlines of the m¼ 1 compo-

nent of the steady-state field created by currents

in a conducting rod or stable plasma within the

rotating wall (~Beq) with all static walls omitted

for clarity. Field penetration through the rotating

wall is found to be (d) reduced and (e) phase

shifted by the persistent eddy currents in the

rotating wall.
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Fig. 4(d), where much better agreement is found when ~Bext is

included. Although in Figs. 5(a) and 5(b) this asymmetry is a

small correction, it can be made large if Beq � Bext, as shown

in Figs. 5(c) and 5(d). If Beq � Bext and D/0 � p, as would

be the case if external currents were used to correct the mis-

alignment of the magnetic axis,31 increasing Rm would

increase the error field significantly.

D. Asymmetric response in plasma discharges

Strong asymmetry in Rm is also observed when the

conducting rod is replaced with a stable plasma. Low cur-

rent, stable plasmas are used to isolate the interaction of

equilibrium currents (~Beq) with ~Bext without considering

MHD instabilities. Figure 6 illustrates large asymmetry in

plasma discharges. The scatter in the data is also larger

due to the poorer reproducibility of the plasma discharge.

Figures 6(a) and 6(b) illustrate a response approaching line-

arity in Rm, and the interactions of the error fields with the

rotating wall are clearly a zeroth order effect. The error

field asymmetry is found to be invariant with guide field

(Bz) reversal, thus ruling out plasma drift effects. Figures

6(c) and 6(d) illustrate another plasma case where the con-

structive and destructive interference between ~Bext and ~Beq

is dramatically demonstrated. A minimum in the total am-

plitude occurs at Rm � 2, which the model can capture

with suitable selection of free parameters Bext=Beq and D/0.

A wide family of curves can be generated depending on

the values of Bext=Beq and D/0.

Figure 7 illustrates the odd parity of the asymmetric

interaction with Rm and ~Bext. While the asymmetry in Rm

is present at all Bext, its sense (or parity) is inverted as ~Bext

is reversed. That the asymmetry was not reversed upon

inversion of Bz, yet was inverted with ~Bext gives confi-

dence that even in the presence of a (stable) plasma, the

error field interaction can be well described by the linear

superposition of Bext and Beq. That is, the stable plasma

(Fig. 6) can be described by the same model as the con-

ducting rod (Fig. 5). The unstable plasma will be treated

in Sec. V and the effectiveness of this model will be fur-

ther discussed in Sec. VI.

IV. VACUUM FIELD EIGENMODES AND VERTICAL
FIELD PENETRATION

Normal mode analysis is used to derive the time-

dependent behavior of the device error fields and corrobo-

rates the experimental observation that the vertical field pen-

etration time (svfp) decreases as Rm increases. As all

equations used in Sec. II are linear in ~B, the system can be

expressed as an eigenvalue equation with corresponding

eigenvalues and eigenvectors (normal modes) in the absence

of any forcing (current sources). The normal modes of multi-

ple wall systems will be considered, beginning with the lim-

iting cases of a single wall and static double walls, then

proceeding to the differentially rotating system and conclud-

ing with the three-wall system necessary to match experi-

mental data.

To solve the normal modes of the system, a matching

problem is carried out in a similar style to that of Sec. III,

where now exponential time dependence is introduced

(QðtÞ / Qe�ct, for any Q). The two-wall geometry of

Fig. 1(b) is used. The field solutions are

I : Brðr; h; tÞ ¼ <½A0e�ih�;

II : Brðr; h; tÞ ¼ <½ðA1 � A2r�2Þe�ih�;

III : Brðr; h; tÞ ¼ <½ð�A3r�2Þe�ih�:

FIG. 5. Asymmetry in Rm in (a) flux exclu-

sion in the presence of both ~Beq (conducting

rod) and ~Bext. For a given D/0, flux exclu-

sion is reduced at Rm > 0 while (b) changing

D/0 7!D/0 þ p reverses the asymmetry.

(c) and (d) With suitably chosen ~Bext, ~Beq,

and D/0, the asymmetry can become very

large and overwhelm the shielding effect of

wall rotation.
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The matching conditions of Eqs. (3) and (4) yield a 4� 4

matrix equation for the 4 unknown parameters

�1 1 �r�2
a 0

csa � 1 1 r�2
a 0

0 1 �r�2
b r�2

b

0 r2
b 1 ðcþ iXÞsb � 1

2
66664

3
77775

A0

A1

A2

A3

2
66664

3
77775 ¼ 0: (13)

Setting the determinant of the matrix of Eq. (13) to zero

yields the characteristic equation

ðsasbaÞc2 �
�

2ðsa þ sbÞ � iXsasba
�
cþ 2ð�2þ iXsbÞ ¼ 0;

(14)

where defining a � r2
b�r2

a

r2
b

replaces the geometry of the prob-

lem with a normalized mutual inductance. Two normal

modes exist, and the equation for the roots of Eq. (14) is then

decomposed into real and imaginary terms

cr ¼ sa þ sb

sasba
6
ðj2

r þ j2
i Þ

1
4

sasba
cos

1

2
arctan

ji

jr

� 	� 	
(15)

x ¼ �X
2

6
ðj2

r þ j2
i Þ

1
4

sasba
sin

1

2
arctan

ji

jr

� 	� 	
(16)

jr � ðsa þ sbÞ2 � 4sasba�
X2

4
ðsasbaÞ2

ji � Xsasbaðsb � saÞ:

To explore the behavior of Eqs. (15) and (16), limiting cases

with respect to rotation (X) and mutual inductance (a) are

treated separately.

A. Single wall limit

The simplest case to consider is that of Fig. 1(a), with

only a single wall which is allowed to rotate. This is

achieved by letting sa 7! 0 in Eqs. (15) and (16). In this limit,

only a single root remains, which is given by

c ¼ 2

sb
� iX: (17)

The real part of this eigenvalue (<½c� � cr � 1
svfp
¼ 2

sa
) is the

unique time constant characterizing eddy current decay (and

thus vertical field penetration) in the single wall system. Fur-

thermore, cr does not depend on X; wall rotation in the single

wall case merely transforms the normal mode into a rotating

frame with x ¼ X. The eigenfunction (field structure) is

given by: A0 ¼ A1 ¼ �r�2
b A3;A2 ¼ 0, which yields a dipole-

like solution as shown in Fig. 8. As this is an infinite-length

model, the wall eddy currents flow purely into and out of the

FIG. 6. Error field asymmetries in Rm in sta-

ble plasma discharges. Amplitude (a) and

phase (b) of the total error field are found to

be asymmetric in Rm, and the asymmetry is

invariant to Bz reversal. Amplitude (c) and

phase (d) indicate that extreme asymmetries

are possible depending on the alignment of
~Bext to ~Beq.

FIG. 7. Contour plot of measured radial magnetic field (Br) as Bext and Rm

are varied. The error field asymmetry in Rm is inverted upon Bext reversal.

Operation limits prevented data collection at large Bext and low Rm.
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page, while in a finite-length wall these currents must close

at the ends giving rise to fringing fields.

B. Static double wall limit

In the limit of no rotation (X 7! 0), Eqs. (15) and (16)

become

c ¼ 1

sasba
sa þ sb6½ðsa þ sbÞ2 � 4asasb�

1
2

h i
: (18)

To begin, the large gap limit of a 7! 1, rb 	 ra is also taken.

In this limit, c ¼ 2
sa
; 2
sb

n o
and each normal mode is independ-

ently tied to its own wall and has the single wall time con-

stant of Eq. (17). Thus, a behaves as a mutual inductance

between the two walls. Figure 9 shows the behavior of c as

a 6¼ 1. Both c diverge from their decoupled values and a fast

and slow root develops. For experimental parameters,

c1 � 10c2. The asymptote of strong coupling (small gap,

a 7! 0) corresponds to the same solution as a single wall sys-

tem with s ¼ sa þ sb and the fast root decaying infinitely

quickly.

For weak coupling (a 7! 1), the eigenfunctions are the

same as Fig. 8. Eigenfunctions with the coupling parameter

set to that of the experiment (aexp ¼ 0:3) are next considered.

As shown in Figs. 9(b) and 9(c), the c1 (fast) eigenfunction is

confined to within the two-wall system, while the c2 (slow)

eigenfunction is dipolar everywhere. In terms of induced

eddy currents, the c1 currents are counter-aligned in each

wall, while the c2 currents are co-aligned, thus they can be

thought of as opposing and reinforcing dipoles, respectively.

Qualitatively, this is reminiscent of the coupled oscillator,

whose eigenmodes are symmetric and anti-symmetric

oscillations.

C. Effect of wall rotation

Wall rotation is now reintroduced, necessitating the full

form of Eqs. (15) and (16) and yielding complex eigenvalues

(c � cr þ ix). The value of X now affects both cr as well as

x, as shown in solutions for experimental parameters plotted

in Fig. 10(a). Increasing Rm brings the two eigenvalues to-

ward each other. Eigenfunctions are shown in Figs. 10(b)

and 10(c) for the intermediate rotation case. Rotation is seen

to phase shift the eigenfunctions in opposite directions. As

with the static solution, one eigenfunction penetrates the

outer wall while the other does not.

With X 7!1 in Eqs. (15) and (16), c ¼ f 2
saa
; 2
sba
� iXg.

The corresponding eigenfunctions are shown in Figs. 10(d)

and 10(e). The c1 eigenfunction is found to decay at a geo-

metrically weighted sa timescale, and does not extend into

the rotating wall. Similarly, the c2 eigenfunction does not see

the static wall, and as such it rotates at x ¼ X and decays at

a geometrically weighted sb timescale. The phase shifts have

also reached an asymptotic limit of / ¼ p
2
. The fast rotation

limit is thus seen to decouple the two walls, acting opposite

to the coupling parameter a. The a parameter splits the

eigenvalues into a slow and fast branch, while rotation brings

both branches back to their (geometrically weighted) single

wall values.

D. Three-wall eigenmodes and comparison to
experiment

As discussed in Sec. II, a three-wall system is required

to adequately capture experimental vertical field penetration

data. The geometry (to scale) is presented in Fig. 1(c), with

FIG. 8. Fieldlines of ~B produced by the eddy current eigenfunction in a sin-

gle wall. Current flows into and out of the page as Jz / dðr � rwÞ exp ð�ihÞ,
producing a constant field within the wall and dipolar field beyond. This

structure is independent of rotation for the single wall case.

FIG. 9. (a) Time constants (eigenvalues) of the static two-wall normal

modes as the coupling parameter a varies. (b) and (c) Eigenstructure of the

normal modes of (a). The fast (slow) root field structure does not (does)

extend beyond the outer wall and thus represents counter- (co-) directed

currents within each wall, respectively.
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the third (outermost) wall corresponding to the mechanical

support structure. Fields for this geometry must be of the

form

I : Brðr; h; tÞ ¼ <½A0e�ih�;

II : Brðr; h; tÞ ¼ <½ðA1 � A2r�2Þe�ih�;

III : Brðr; h; tÞ ¼ <½ðA3 � A4r�2Þe�ih�;

IV : Brðr; h; tÞ ¼ <½ð�A5r�2Þe�ih�;

the matching conditions of Eqs. (3) and (4) are applied,

which then forms a 6� 6 matrix equation for the unknown

An. For brevity, only the characteristic equation yielded by

setting the determinant to zero is shown

0 ¼ ac3 þ bc2 þ ccþ d (19)

a ¼ sasbsca1a2

b ¼ 2ðsasba1 þ sbsca2 þ sasca12Þ þ iXsasbsca1a2

c ¼ 4ðsa þ sb þ scÞ þ i2Xðsasba1 þ sbsca2Þ
d ¼ 4ð�2þ iXsbÞ:

Again, coupling parameters are defined which simplify the

geometry: a1 � r2
a�r2

b

r2
b

, a2 � r2
b�r2

c

r2
c

, a12 � r2
a�r2

c

r2
c

. Beyond these

simplifications, analytic forms for the three roots of Eq. (19)

are prohibitively lengthy and are not shown. Solutions of Eq.

(19) are shown in Fig. 11(a) and indicate that rotation affects

the three-wall eigenvalues in broadly the same manner as the

two-wall eigenvalues of Sec. IV C. For experimental parame-

ters, there is one fast root which decreases as Rm increases,

and two slow roots which increase as Rm increases. Eigen-

functions at Rm ¼ 0 are shown in Figs. 11(b)–11(d) and illus-

trate that the fastest root c1 does not penetrate the second

(rotating) wall, the middle root c2 does not penetrate the third

wall, while the slowest root c3 penetrates all walls.

The inclusion of the third wall permits quantitative com-

parison to experiment. The normal modes are experimentally

excited by the application of a square-wave Bext pulse, yield-

ing the time-traces of Fig. 11(e). The steady-state response

created by this excitation has already been discussed in Sec.

III A. Focusing on the time-dependent behavior shows that

the vertical field penetration time (svfp) decreases as Rm

increases. As c3 is the most persistent eddy current, it domi-

nates the measurement a short time after the current pulse

turn-on. Figure 11(f) confirms the counter-intuitive result

that increasing wall rotation (X) decreases svfp. The slowest

root of Eq. (19) matches the svfp data very closely despite

the fact that there are no free parameters. The dotted lines in

Fig. 11(f) plot the cr
3 root with sc varied by 61 ms (or 2%),

which is sufficient to bound the data.

FIG. 10. (a) Real (cr) and imaginary (x) time constants of the two-wall nor-

mal modes with X 6¼ 0 (Rm � Xsb). Eigenfunctions of (b) the fast root and

(c) the slow root at intermediate Rm. Eigenfunctions of (d) the fast root and

(e) the slow root as X 7!1.

FIG. 11. (a) Eigenvalues of the three-wall normal modes. (b)–(d) Eigen-

functions of each root with X ¼ 0. (e) Experimental excitation of the normal

modes pulsing ~Bext and resultant measurement of the vertical field penetra-

tion time (svfp). (f) Comparison of svfp with cr
3 evaluated using the experi-

mental parameters of Table I. Dotted lines in (f) are evaluated with sc62%.
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V. PLASMA INSTABILITIES AND ERROR FIELD
AMPLIFICATION

While the results of the preceding sections apply to

either vacuum or stable-plasma configurations, the inclusion

of a model for the linear plasma instabilities allows for an

examination of the interaction of the kink mode with wall

rotation and device error fields. A plasma model will first be

presented and then applied to find the normal modes (insta-

bilities) in both the single wall and double wall limits. Error

field amplification by the plasma will then be considered.

A. Description of plasma model

The plasma of the rotating wall machine is modeled

using an ideal MHD treatment described in Ref. 19 which is

here briefly summarized. A screw-pinch equilibrium is first

defined, in which the equilibrium field, B0 ¼ Bz0ðrÞẑ þ
Bh0ðrÞĥ is axisymmetric and invariant in ẑ. The plasma is

taken to be force free (such that rp0 ¼ 0, and

r� B0 ¼ kðrÞ
l0

B0) and have radius rp. The equilibrium cur-

rent profile is taken to be constant within this radius and zero

outside such that k ¼ k0Hðr � rpÞ, where J0ðrÞ � kðrÞ
l0

B0ðrÞ.
For this simple equilibrium, the safety factor q(r) is constant

for r < rp and is given by qðrpÞ ¼
4p2r2

pBz

l0IpL , where L is the de-

vice length. For r > rp, q(r) increases quadratically. An

eigenvalue approach is taken to solve for the unstable modes.

Taking QðtÞ / Qe�ct (for any Q, where c � cr þ ix), the

momentum and induction equations are linearized, yielding

c2q0
~n ¼ ~J � B0 þ

k
l0

B0 � ~B �r~p; (20)

~B ¼ r� ð~n � B0Þ; (21)

where q0 is the (constant) mass density, and the displace-

ment vector ~n is introduced. The differential equations of

Eqs. (20) and (21) are made algebraic by simplification of

spatial gradients. However, due to the line-tied property of

the device Fourier decomposition is only allowed in h.

Hence, ~n and ~B can be written ~n ¼ ~nðr; zÞe�ih and ~B ¼
~Bðr; zÞe�ih (only m¼ 1 kink modes are treated). In this sim-

plified equilibrium radial gradients in Eqs. (20) and (21) only

exist at rp. Thus, the radial derivative is substituted with

algebraic “jump parameters,” given for ~Br as

Dþ ¼
1

~Brp

d

dr
ðr ~BrÞr¼rþp

(22)

with similar definitions for jumps in ~n. Solutions of the re-

sultant partial differential equation yield two allowable Fou-

rier modes in z (f ðzÞ / eikz). Equations (20) and (21) thus

result in a quadratic equation for k, whose solutions are

k1;2 ¼�
Bhrp

rpBz0

þ k0

2ð1� DþÞ

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0

4ð1� DþÞ2
þ c2

v2
Að1� DþÞ

s
; (23)

where vA � B2
z0=l0q0. The boundary condition of line-tying

relates the two k to one another, forming the dispersion rela-

tionship. Line-tying requires that ~nrðz ¼ 0Þ ¼ ~nr

ðz ¼ LÞ ¼ 0. Thus, ~n must be a linear combination of both k
whose relationship is quantized such that k1 � k2 ¼ 2np

L .

Equation (23) thus becomes

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4

ðqðrpÞÞ2ð1� DþÞ2
þ 4c2s2

A

1� Dþ

s
; (24)

where sA � L=2pvA. The instabilities of interest have csw � 1

and sw 	 sA. Thus, csA � 1 and the second term in the square

root of Eq. (24) is negligible. The dispersion relation (for

n¼ 1) is simply

1� Dþ ¼
2

qðrpÞ
: (25)

The problem has thus been reduced to a determination of the

jump parameter Dþ, which is computed by solving another

matching problem. With vacuum assumed to fill the annulus

rp < r < ra, the functional form of the field in the two-wall

geometry shown in Fig. 1(b) is

I : Brðr; h; tÞ ¼ <½ðA0 � A1r�2Þe�ih�;

II : Brðr; h; tÞ ¼ <½ðA2 � A3r�2Þe�ih�;

III : Brðr; h; tÞ ¼ <½ðBext � A4r�2Þe�ih�;

where external forcing of the form of Fig. 2(a) has been

included. In addition to the standard matching conditions at

the conducting walls (Eqs. (3) and (4)), the jump condition

of Eq. (22) yields another matching condition

Dþ ¼
A0 þ A1r�2

p

A0 � A1r�2
p

r2
pdA0 ¼ A1;

(26)

where shorthand notation d � � 1�Dþ
1þDþ

� �
¼ 1

1�qðrpÞ is intro-

duced. Using Eq. (26) in conjunction with Eqs. (3) and (4)

allows a 5� 5 matrix to be formed for the unknown An coef-

ficients. However, in contrast to Sec. IV, the time depend-

ence will here be left general. Furthermore, as the matrix is

sparse, it can be reduced to an equivalent coupled differential

equation, given by

2r2
ar2

pd

r2
a � r2

pd

 !
�2r2

a

r2
a � r2

pd

 !

r2
bð2� iRmÞ iRm

2
664

3
775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{��M

A2

A3

" #zfflffl}|fflffl{~A

þ
�r2

asa sa

�r2
bsb sb

" #

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
��D

@

@t

A2

A3

� �
¼

0

2Bextr
2
b

� �
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

~Bext

; (27)

where A0 ¼ A2r2
a�A3

r2
a�r2

pd , A1 ¼ r2
pd

A2r2
a�A3

r2
a�r2

pd

� �
, A4 ¼ Bextr

2
b �

A2r2
b þ A3 can be used to find the remaining coefficients.
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This equation can now be solved both for the normal modes

(by setting ~Bext ¼ 0) and for steady-state error field amplifi-

cation (by setting @
@t 7! 0).

B. Plasma normal modes (kink instabilities)

Equation (27) shows that for a given Dþ a unique set of

eigenmodes is present in the system, allowing a prediction

for the instability decay/growth rate (<½c� � cr) and rotation

frequency (=½c� � x). To find the eigenmodes of the system,

the forcing (~Bext) is set to zero and the characteristic equation

for c is formed by solving detð ��M þ c��DÞ ¼ 0 in Eq. (27),

yielding

0 ¼ ac2 þ bcþ c (28)

a ¼ sasbð1� abÞð1� apdÞ
b ¼ �2½saabð1� apdÞ þ sbðab � apdÞ�
�isaRmð1� abÞð1� apdÞ

c ¼ �4ab þ i2Rmðab � apdÞ

whose solution can be given by decomposing into real and

imaginary terms

cr ¼ 1

sb

ab

1� ab

� 	
þ 1

sa

ðab � apdÞ
ð1� abÞð1� apdÞ

� 	

6ðg2
r þ g2

i Þ
1
4 cos

1

2
arctan

gi

gr

� 	� 	
; (29)

x ¼ X
2

6ðg2
r þ g2

i Þ
1
4sin

1

2
arctan

gi

gr

� 	� 	
; (30)

gr �
1

s2
b

ab

1� ab

� 	2

þ 1

s2
a

ðab � apdÞ
ð1� abÞð1� apdÞ

� 	2

þ 2ab

sasb

2� ab � apd

ð1� apdÞð1� abÞ2

 !
� X2

4

gi � �
X

1� ab

� 	
1

sa

ab � apd
ð1� apdÞ

� ab

sb

� �
;

where non-dimensional coupling terms ab � r2
b

r2
a

and ap �
r2

p

r2
a

have been used. As Eqs. (29) and (30) are lengthy, limiting

cases are considered.

1. Single wall limit

The single wall limit (shown in Fig. 1(a)) is found by

letting sa 7! 0 in Eqs. (29) and (30). There is now only one

solution for c, given by

c ¼ 2

sb

� 	
1� qðrpÞ

1� ap � qðrpÞ
� iX; (31)

where d � ð1� qðrpÞÞ�1
has been used. The behavior of

<½c� � cr as a function of qðrpÞ is plotted in Fig. 12(a). The

instability threshold is at qðrpÞ ¼ 1, matching the Kruskal-

Shafranov32,33 condition. The ideal-wall stability limit is

also found (at qðrpÞ ¼ 0:5 for sample parameters) beyond

which the neglect of the final term of Eq. (24) is invalid.

Wall rotation is shown to be ineffective at stabilizing the

mode in the single wall case as it does not modify cr in Eq.

(31). Eigenfunctions at a few values of qðrpÞ are shown in

Figs. 12(b)–12(d). Unstable (qðrpÞ < 1) eigenfunctions are

dipolar and inhibited from exiting the wall. The marginally

stable (qðrpÞ ¼ 1) eigenfunction does not feel the wall at all,

and stable (qðrpÞ > 1) eigenfunctions have fieldlines which

are inhibited from entering the wall. All cases are consistent

with the condition csA � 1.

2. Kink stabilization by wall rotation

The full two-wall dispersion relation of Eqs. (29) and

(30) illustrates a scaling (shown in Fig. 13) very reminiscent

of the vacuum field eigenmodes of Sec. IV C. Once again,

the introduction of rotation tends to bring the two eigenmo-

des to a more common value, slowing the fast root and

speeding up the slow root. However, now c ¼ 0 lies between

the two roots when qðrpÞ < 1. Raising the slow root thus

requires it to transition through the stability threshold. Thus,

stabilization of kink modes by wall rotation can be thought

FIG. 12. (a) Time constants (eigenvalues) of the exponentially forced single

wall system, with forcing specified in terms of the edge safety factor q. Field

structures (eigenfunctions) at (b) qðrpÞ < 1, (c) qðrpÞ ¼ 1, and (d) qðrpÞ > 1.

FIG. 13. Kink instability eigenvalues are brought towards a common value

by wall rotation, as was the case with the vacuum eigenvalues shown in

Fig. 10(a). At a critical Rm, the kink mode is stabilized.
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of in terms of coupling the stable and unstable eigenmodes

of the two-wall system. This theoretical result was first con-

ceptualized by Gimblett,16 and was predicted for the line-

tied system by Hegna.19 Subsequent experimental work has

verified this prediction.30,34 Figure 13 illustrates that there is

a critical Rm for stabilization of the kink mode, whose scal-

ing was explored in Ref. 19 and is not repeated here.

C. Error field amplification

With the linear stability solved, attention is now turned

to the driven stable modes predicted by Eq. (27). EFA (also

called resonant field amplification) is calculated by finding

the steady-state (t 7!1) solution of Eq. (27) while allowing

the forcing ~Bext to be finite. In the steady-state, @
@t 7!0 and ~A

is found by simple inversion of Eq. (27), such that

~AEFA ¼ ð ��M
�1Þ~Bext, yielding

~AEFA ¼
2Bext

2� iRm

r2
p

r2
b

1

1� qðrpÞ

� 	
� 1

 ! 1
r2

p

1� qðrpÞ

2
4

3
5; (32)

which gives the field structure in all regions after using the

definitions for An given after Eq. (27). To evaluate the mag-

nitude of the EFA, the predicted total field ~BEFAjr¼rm
at a

measurement location rm (taken to be just outside rp in

region I) is normalized to the applied error field amplitude

(j~Bextj). This yields

jBr;EFAj
Bext

¼
1�

r2
p

r2
m

1

1� qðrpÞ

� 	










ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ R2
m

4

r2
p

r2
b

1

1� qðrpÞ

� 	
� 1

 !2
vuut

: (33)

As the fields are steady state, only the rotating wall interacts

with the error field and thus Eq. (33) has no dependence on

the inner wall parameters. Figure 14 illustrates the behavior

of the EFA as Rm and qðrpÞ is varied. When Rm ¼ 0, as

qðrpÞ 7! 1 (the stability threshold) the EFA amplitude

diverges. However, unbounded growth breaks the steady-

state assumption and thus the full treatment of Eq. (27) is

required.23 Nonetheless, the EFA can be expected to

approach large values in this regime.

Finite Rm modifies this picture. First, shielding of Bext

occurs, such that in the high-qðrpÞ (stable plasma) limit Eq.

(33) is identically equal to the vacuum field result of Eq. (7).

Second, the linear stability threshold is brought to lower

qðrpÞ as Rm increases, thus finite EFA is present at lower

qðrpÞ whereas otherwise instability would result. Note the

EFA is not calculated where the kink is unstable (cr < 0) as

a steady state cannot be reached. Third, and most impor-

tantly, the actual amplitude of the EFA is decreased. This is

thought to be because of a poorer overlap of the kink eigen-

mode to the applied error field at large Rm. As Rm 7!1, the

EFA vanishes.

VI. DISCUSSION

This work has shown that the superposition of error

fields from external conductors and equilibrium plasma cur-

rents give rise to potentially significant asymmetries in wall

rotation direction. These asymmetries were found to be the

zeroth order effect of wall rotation on plasma dynamics in

the rotating wall machine. In fact, the error field effect was

initially misinterpreted as asymmetric stabilization of the

kink mode in the device,35 until experiments with a conduct-

ing rod revealed asymmetry without plasma. Later experi-

ments elucidated the critical importance of this same error

field to mode-locking bifurcations present in the device.29,30

Asymmetry in the error field naturally gives rise to asymme-

tries in mode-locking and other instability dynamics.

Although toroidal effects are not treated here, future devices

with flowing liquid metals may also exhibit similar error

field asymmetries which then indirectly affect the plasma

stability.

Section III D illustrated that the model developed to treat

rigid conductors was also successful in capturing the asymme-

tries observed in stable plasma discharges. Vacuum superposi-

tion of ~Bext and ~Beq assumes that the two are independent of

one another. This is not a priori guaranteed as the plasma can

respond (move) due to ~Bext while the rigid rod cannot. That

the vacuum superposition is valid for the stable plasma as well

as the rigid conducting rod suggests that there is no appreci-

able modification of the error field by the stable plasma.

The result that the vertical field penetration time

decreases as wall rotation increases is counterintuitive.

Although infinite wall rotation yields a “perfectly con-

ducting” wall, it does not simply increase the effective wall

time. This work has shown that careful consideration of the

multi-wall couplings is essential to build intuition on the

effect of differential rotation on field eigenmodes. In the

limit of an infinite number of walls, these results are reminis-

cent of the flowing liquid metal dynamo problem, where

expected growth/decay constants are very sensitive functions

of the flow profiles.36 It is also clear that the success of the

simple model to capture the experimental svfp data indicates

that the long-thin cylinder approximations made are very

good.

FIG. 14. The amount of EFA is shown as a function the safety factor (q(r))

and wall rotation Rm. At high qðrpÞ the error field is simply shielded, while

at low qðrpÞ the wall rotation greatly reduces the amount of EFA.
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EFA has been predicted to be mitigated by wall rotation

in this study. Another model has also been developed to pre-

dict EFA (Refs. 22, 23, and 37) which predicts that the

amplification factor scales as
cvac

ckink
(Eqs. (16)–(18) in Ref. 22),

where ckink would be the eigenvalue of the kink mode given

by Eqs. (29) and (30) and cvac would be the vacuum field

eigenvalue given by Eqs. (15) and (16). While the EFA as

derived in Sec. V C varies somewhat with rm, both methods

yield broadly similar results for the impact of wall rotation

on the EFA. In the model of Ref. 37, the reduction in amplifi-

cation can be seen to be due to the imaginary parts of both

cvac and ckink, present when Rm 6¼ 0. Inclusion of a finite

imaginary component removes the divergence at marginal

stability (cr
kink 7! 0). Additionally, the study of Ref. 23 is dis-

tinct from that treated herein due to the presence of differen-

tial wall rotation (multiple walls). Differential rotation

precludes the use of Doppler shifts, and introduces non-

linear X dependencies to both cvac and ckink.
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